Dynamical Entropy in Banach Spaces
نویسندگان
چکیده
We introduce a version of Voiculescu-Brown approximation entropy for isometric automorphisms of Banach spaces and develop within this framework the connection between dynamics and the local theory of Banach spaces as discovered by Glasner and Weiss. Our fundamental result concerning this contractive approximation entropy, or CA entropy, characterizes the occurrence of positive values both geometrically and topologically. This leads to various applications; for example, we obtain a geometric description of the topological Pinsker factor and show that a C∗-algebra is type I if and only if every multiplier inner ∗-automorphism has zero CA entropy. We also examine the behaviour of CA entropy under various product constructions and determine its value in many examples, including isometric automorphisms of `p for 1 ≤ p ≤ ∞ and noncommutative tensor product shifts.
منابع مشابه
2 00 6 Dynamical Entropy in Banach Spaces
We introduce a version of Voiculescu-Brown approximation entropy for isometric automorphisms of Banach spaces and develop within this framework the connection between dynamics and the local theory of Banach spaces as discovered by Glasner and Weiss. Our fundamental result concerning this contractive approximation entropy, or CA entropy, characterizes the occurrence of positive values both geome...
متن کامل4 Dynamical Entropy in Banach Spaces
We introduce a version of Voiculescu-Brown approximation entropy for isometric automorphisms of Banach spaces and develop within this framework the connection between dynamics and the local theory of Banach spaces discovered by Glasner and Weiss. Our fundamental result concerning this contractive approximation entropy, or CA entropy, characterizes the occurrence of positive values both geometri...
متن کاملOn Two-parameter Dynamical Systems and Applications
In this note some useful properties of strongly continuous two-parameter semigroups of operators are studied, an exponential formula for two-parameter semigroups of operators on Banach spaces is obtained and some applied examples of two-parameter dynamical systems are discussed
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملMetric Entropy of the Grassmann Manifold
The knowledge of the metric entropy of precompact subsets of operators on finite dimensional Euclidean space is important in particular in the probabilistic methods developped by E. D. Gluskin and S. Szarek for constructing certain random Banach spaces. We give a new argument for estimating the metric entropy of some subsets such as the Grassmann manifold equipped with natural metrics. Here, th...
متن کامل